Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed1244    
    Printed66    
    Emailed0    
    PDF Downloaded241    
    Comments [Add]    

Recommend this journal

Serum Gamma Glutamyltransferase (GGT) in coronary artery disease: Exploring the Asian Indian Connection


1 Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
2 Department of Biostatistics and Health Informatics, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India

Correspondence Address:
Aditya Kapoor
Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow - 226 014, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aca.aca_62_21

Rights and Permissions

Year : 2022  |  Volume : 25  |  Issue : 4  |  Page : 408-413

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (914 KB)
Email article
Print Article
Add to My List
Background: There is a need to identify novel markers for CAD, independent of traditional CV risk factors. One of these is gamma-glutamyl transferase (GGT), a marker of increased oxidative stress. Given the high prevalence of CAD in Asian Indians, the link of GGT and CAD in them needs to be studied. Aim: To assess GGT in patients with angiographically documented CAD. Methods and Results: Two hundred patients aged 58.1 ± 9.95 years, 73% males, hypertension 56%, diabetes 40% were included. Mean GGT was 63.6 ± 44.33 (10–269 U/L). The levels of GGT progressively increased in those with single/double or triple-vessel CAD (36.5, 61.5, and 87 U/L, respectively, P < 0.001). Using objective criteria of CAD burden (SYNTAX and Gensini scores), we reaffirmed these findings. GGT in patients with SYNTAX tertiles 0–22, 23–32, and ≥ 33 was 33, 62, and 97 U/L, respectively and in Gensini tertiles 0–17.65, 17.66–56.65, ≥56.66 was 32, 52, and 88 U/L, respectively, all P < 0.001. SYNTAX score ≥ 23 was present in only 23% patients in GGT tertile 1 (<41 U/L), whereas60% and 94% in GGT tertiles 2 and 3 had SYNTAX ≥ 23. Significant positive correlation was seen between GGT and SYNTAX (r = 0.634) and Gensini score (r = 0.772). Conclusions: In this study, GGT had an independent correlation with angiographic severity of CAD and SYNTAX and Gensini scores. Although the existing evidence seems biologically plausible, more studies are needed to explore the potential role of this inexpensive marker for predicting disease burden in patients with CAD.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
2 Department of Biostatistics and Health Informatics, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India

Correspondence Address:
Aditya Kapoor
Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow - 226 014, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aca.aca_62_21

Rights and Permissions

Background: There is a need to identify novel markers for CAD, independent of traditional CV risk factors. One of these is gamma-glutamyl transferase (GGT), a marker of increased oxidative stress. Given the high prevalence of CAD in Asian Indians, the link of GGT and CAD in them needs to be studied. Aim: To assess GGT in patients with angiographically documented CAD. Methods and Results: Two hundred patients aged 58.1 ± 9.95 years, 73% males, hypertension 56%, diabetes 40% were included. Mean GGT was 63.6 ± 44.33 (10–269 U/L). The levels of GGT progressively increased in those with single/double or triple-vessel CAD (36.5, 61.5, and 87 U/L, respectively, P < 0.001). Using objective criteria of CAD burden (SYNTAX and Gensini scores), we reaffirmed these findings. GGT in patients with SYNTAX tertiles 0–22, 23–32, and ≥ 33 was 33, 62, and 97 U/L, respectively and in Gensini tertiles 0–17.65, 17.66–56.65, ≥56.66 was 32, 52, and 88 U/L, respectively, all P < 0.001. SYNTAX score ≥ 23 was present in only 23% patients in GGT tertile 1 (<41 U/L), whereas60% and 94% in GGT tertiles 2 and 3 had SYNTAX ≥ 23. Significant positive correlation was seen between GGT and SYNTAX (r = 0.634) and Gensini score (r = 0.772). Conclusions: In this study, GGT had an independent correlation with angiographic severity of CAD and SYNTAX and Gensini scores. Although the existing evidence seems biologically plausible, more studies are needed to explore the potential role of this inexpensive marker for predicting disease burden in patients with CAD.






[FULL TEXT] [PDF]*


        
Print this article     Email this article